Argonne°

NATIONAL LABORATORY

Channel Access Client Programming

Andrew Johnson — Computer Scientist, AES-SSG

Office of

U.S. DEPARTMENT OF |
e EN ERGY ‘ Science

v

Channel Access

m The main programming interface for writing Channel Access clients is the library that
comes with EPICS base

e Written in C++, the APl is pure C
m Almost all CA client APIs for other languages call the C library
® Main exception: Pure Java library ‘CAJ’
m Documentation:
® FEPICS R3.14 Channel Access Reference Manual by Jeff Hill et al.
e Available in <base>/html, or from the EPICS web site
m This lecture covers
e Fundamental API concepts and routines
e Data types and usage

e Template examples

AES EPICS Training — May 2013 — CA Client APIs

http://www.aps.anl.gov/epics/base/R3-14/12-docs/CAref.html

v

Search and Connect to a PV

use lib '/path/to/base/lib/perl’';
use CA;

my @access = ('no ', '');

my $chan = CA->new ($ARGV[0]) ;
CA->pend io(1.0);

printf "PV: %$s\n", $chan->name;

printf " State: $s\n", $chan->state;

printf " Server: $s\n", $chan->host name;

printf " Access rights: %sread, %swrite\n",
$access[$chan->read access], $access[$chan->write access];

printf " Data type: $s\n", $chan->field type;

printf " Element count: %d\n", $chan->element count;

m This is the basic cainfo program in Perl (without friendly error reporting)

AES EPICS Training — May 2013 — CA Client APIs

v

Search and Connect in C

#include <stdio.h>
#include "cadef.h"

char *connState[] = {"Never", "Previously", "Connected", "Closed"};
#define access(v) (v ?2 "" : "no ");

int main(int argc, char **argv) ({
chid chan;

SEVCHK (ca_create channel (argv[l], NULL, NULL, O, &chan),
"Create channel failed");
SEVCHK (ca_pend io(1.0), "CA Search failed");

printf ("PV: %$s\n", ca name(chan)) ;
printf (" State: $s\n", connState[ca state(chan)]);
printf (" Server: $s\n", ca host name(chan)) ;
printf (" Access rights: %$sread, %swrite\n",

access (ca_read access(chan)), access(ca write access(chan));
printf (" Data type: $s\n", dbr type to text(ca_field type(chan)));
printf (" Element count: %u\n", ca element count(chan)) ;

AES EPICS Training — May 2013 — CA Client APIs

v

Get and Put a PV

use lib '/path/to/base/lib/perl’';
use CA;

my $chan = CA->new ($ARGVI[O0]) ;
CA->pend io(1.0);

Schan->get;
CA->pend io(1.0);
printf "0Old Value: %s\n", $chan->value;

Schan->put (SARGV[1l]) ;
CA->pend io(1.0);

Schan->get;
CA->pend io(1.0);
printf "New Value: %$s\n", S$chan->value;

m This is the basic caput program in Perl (without friendly error reporting)

AES EPICS Training — May 2013 — CA Client APIs

v

Get and Put in C

#include <stdio.h>
#include "cadef.h"

int main(int argc, char **argv) ({
chid chan;
dbr string t value;

SEVCHK (ca_create channel (argv[l], NULL, NULL, O, &chan),
"Create channel failed");
SEVCHK (ca_pend io(1.0), "Search failed");

SEVCHK (ca_get (DBR_STRING, chan, &value), "Get failed");
SEVCHK (ca_pend io(1.0), "Pend I/O failed");
printf ("Old Value: %s\n",);

SEVCHK (ca_put (DBR_STRING, chan, argv[2]), "Put failed");
SEVCHK (ca_pend io(1.0), "Pend I/0 failed");

SEVCHK (ca_get (DBR_STRING, chan, &value), "Get failed");

SEVCHK (ca_pend io(1.0), "Pend I/O failed");
printf ("New Value: %s\n",);

AES EPICS Training — May 2013 — CA Client APIs

v

Monitor a PV

use lib '/path/to/base/lib/perl’';
use CA;

my $chan = CA->new ($ARGVI[O0]) ;
CA->pend io(1.0);

$chan->create subscription('v', \&val callback);
CA->pend event(0.0);

sub val callback {
my ($chan, $status, $data) = @ ;
if ('$status) {
printf "PV: %$s\n", $chan->name;
printf " Value: %s\n", $data;

}
m This is a basic camonitor program in Perl (without error checking)

AES EPICS Training — May 2013 — CA Client APIs

v

Monitor in C

#include <stdio.h>
#include "cadef.h"

void val callback(struct event handler args eha) ({
if (eha.status == ECA NORMAL) {
printf ("PV: %s\n", ca name(eha.chid));
printf (" Value: %s\n", (const char *) eha.dbr);

}

int main(int argc, char **argv) ({
chid chan;

SEVCHK (ca_create channel (argv[l], NULL, NULL, O, &chan),
"Create channel failed");

SEVCHK (ca_pend io(1.0), "Search failed");
SEVCHK (ca_create subscription (DBR_STRING, 1, chan, DBE VALUE,

val callback, NULL, NULL), "Subscription failed");
SEVCHK (ca_pend event(0.0), "Pend event failed");

AES EPICS Training — May 2013 — CA Client APIs

v

Handling Errors

m What happens if the PV search fails, e.g. the IOC isn't running, or it's busy and takes
longer than 1 second to reply?
® In Perl:
O CA->pend io(1l.0) throws a Perl exception (die)
0O Program exits after printing:

ECA_TIMEOUT - User specified timeout on 10 operation expired at test.pl line 5.

O We could trap that exception using
eval {CA->pend io(1)};
if ($@ =~ m/~ECA_TIMEOUT/) { ... }

e |InC:
0 ca _pend io(1.0) returns ECA_TIMEOUT
O SEVCHK () prints a message and calls abort()

m Problem with these approaches:

® How to write a program that doesn't require the I0C to be running when it starts up?

AES EPICS Training — May 2013 — CA Client APIs

Event-driven Programming

m First seen when setting up the CA monitor:

$chan->create subscription('v', \&val callback);
CA->pend event(0.0) ;

e The CA library will run the val_callback subroutine whenever the server sends a new data
value for this channel

e The program must be inside a call to CA->pend event () or CA->pend _io () for the CA
library to execute callback routines

0o Multi-threaded C programs can avoid this requirement (Perl programs can't)
o Callbacks are executed by other threads created inside the CA library

m Most CA functionality can be event-driven

m Itislegal to call most CA routines from within a callback subroutine

e The main exceptions are ca_poll(), ca_pend event() and ca_pend io()

AES EPICS Training — May 2013 — CA Client APIs

° 10

Event-driven PV Search and Connect

use lib '/path/to/base/lib/perl’';
use CA;

my @chans = map {CA->new($_, \&conn_callback)} QARGV;
CA->pend event(0) ;

sub conn callback {
my (Schan, Sup) = @_;
printf "PV: %$s\n", $chan->name;

printf " State: $s\n", $chan->state;

printf " Host: $s\n", $chan->host name;

my @access = ('no ', '');

printf " Access rights: %sread, %swrite\n",
$access[$chan->read access], $access[$chan->write access];

printf " Data type: $s\n", $chan->field type;

printf " Element count: %d\n", $chan->element count;

}
m The cainfo program using callbacks

AES EPICS Training — May 2013 — CA Client APIs

° 11

Event-driven Search and Connect in C

#include <stdio.h>
#include "cadef.h"

char *connState[] = {"Never", "Previously", "Connected", "Closed"};
##define access(v) (v ?2 "" : "no ");

void conn_callback(struct ca connection handler args cha) {
printf ("PV: %s\n", ca name(cha chid)) ;
printf (" State: %$s\n", connState[ca_state(cha.chid)]);
printf (" Server: $s\n", ca_host _name (cha.chid));
printf (" Access rights: %sread, %swrlte\n"
access (ca_read access(cha.chid)), access(ca_write_access(cha.chid));
printf (" Data type: $s\n", dbr_ type to_ text(ca field type(cha.chid)))
printf (" Element count: %u\n", ca_glement_count(cha chid)) ;

}

int main(int argc, char **argv) {
for (int i = 1; i < argc; i++) {
chid chan;
SEVCHK (ca_create_ channel (argv[i], conn_callback, NULL, 0, &chan),
"Create channel failed");
}
SEVCHK (ca_pend event(0.0), "Pend event returned");

AES EPICS Training — May 2013 — CA Client APIs

° 12

Event-driven PV Monitor

use 1lib '/path/to/base/lib/perl’';
use CA;
my @chans = map {CA->new($, \&conn cb)} @ARGV;
CA->pend event (0) ;
sub conn_cb {
my ($ch, $up) = @_;
if (Sup && ! Smonitor{$ch}) ({
$monitor{$ch} = Sch->create subscription('v', \&val cb);
}
}
sub val cb {
my (S$ch, $status, $data) = @ ;
if ('$status) {
printf "PV: %$s\n", $ch->name;
printf " Value: %s\n", $data;

}
m The camonitor program using callbacks

AES EPICS Training — May 2013 — CA Client APIs

o 13

v

Event-driven Monitor in C

m Student exercise:

® Write a program in C that

O

O

O

O

Accepts a list of PV names from the command line

Connects to these PVs and monitors them for value changes
Prints the new values to stdout as they arrive

Still works properly after an 10C reboot

® Look at previous slides, or the CA Reference Manual
e Don't worry about compiling it yet

AES EPICS Training — May 2013 — CA Client APIs

14

Data Types for C code

m CA routines take an integer type argument to indicate the data type to transfer

m These are macros defined in db_access.h

Data Type
dbr char t

dbr short t
dbr _long t
dbr float t
dbr double t
dbr enum t
dbr | strlng t

Name Macro
DBR_CHAR
DBR_SHORT
DBR_LONG
DBR FLOAT
DBR DOUBLE
DBR_ENUM
DBR_STRING

DBR STS any
DBR TIME any
DBR GR_num

DBR CTRL num

DBR GR ENUM

DBR_CTRL_ENUM

DBR PUT ACKT
DBR PUT . " ACKS

DBR_STSACK STRING
DBR_CLASS_NAME

struct
struct
struct
struct

struct
struct

dbr sts_any
dbr time any
dbr gr num

dbr ctrl num

dbr gr_ enum

dbr ctrl _enum

dbr put . ackt t
dbr_put_acks_t

struct dbr_ stsack_string

dbr class name t

AES EPICS Training — May 2013 — CA Client APIs

Type Definition

epicsInt8 any, num
epicsIntlé6 any, num
epicsInt32 any, num
epicsFloat32 any, num
epicsFloat64 any, num
epicsUIntlé6 any

char [40] any

{ alrm, wval }

{ alrm, stamp, val }

{ alrm, units, disp, val }

{ alrm, units, disp, ctrl, wval }
{ alrm, no_str, strs[], val }

{ alrm, no_str, strs[], val }
epicsUIntlé6

epicsUIntlé6

{ alrm, ackt, acks, wval }
char [40]

15

v

Excerpt from db_access.h

/*

*

*/

/* structure for a control double request */

DBR CTRL DOUBLE returns a control double structure (dbr ctrl double)

struct dbr ctrl double{

dbr short t
dbr short t
dbr short t
dbr short t
char

dbr double t
dbr double t
dbr double t
dbr double t
dbr double t
dbr double t
dbr double t
dbr double t
dbr double t

status;

severity;

precision;

RISC pad0;
units[MAX UNITS SIZE];
upper_disp limit;
lower disp limit;
upper_alarm limit;
upper warning limit;
lower warning limit;
lower alarm limit;
upper ctrl limit;
lower_ctrl_llmlt;
value;

AES EPICS Training — May 2013 — CA Client APIs

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

status of value */

severity of alarm */

number of decimal places */
RISC alignment */

units of value */

upper limit of graph */
lower limit of graph */

upper control limit */
lower control limit */
current value */

16

v

Array Data

Callsto ca_xxx() are equivalentto ca_array xxx() with a count of 1

B The ca element count() Macro gives the maximum possible array size

e Value is sent by the server just once, at connection time

m Arrays can contain less data; the I0C knows the current array size

e Before Base release 3.14.12 the CA library would always add zero values after the valid array
elements to fill it up to the maximum size (or the size requested)
m From Base 3.14.12 onward, you can pass a count of 0 into ca_array get callback()
and ca_create subscription() to fetch only the valid array elements
® The callback is given the number of elements provided
O This will never be greater than ca_element count ()

® For subscription callbacks, that number may be different every time

AES EPICS Training — May 2013 — CA Client APIs
17

v

String Handling

m Adbr string_ tvalue (DBR STRING field) uses a fixed length 40 character buffer
® Aterminating zero will always be present
e Some record fields can only hold fewer characters, e.g. EGU
m Longer strings can be stored in a dbr_char_t array
e Waveform record type, or some other array field
® A terminating zero element might not be present
m Newer |OCs also support accessing string fields as a DBR_CHAR array

® Aterminating zero should be present

AES EPICS Training — May 2013 — CA Client APIs

18

Specifying Data Types in Perl

m Most of the Perl I/O routines handle the channel data types automatically

Schan->get fetches one element in the channel’s native type

o Valueis returned by $chan->value

O Arrays are not supported, no type request possible

$chan->get callback (SUB) fetches all elements in the channel’s native data type
O Optional TYPE and COUNT arguments to override

$chan->create subscription (MASK, SUB) requests all elementsin the
channel’s native type

0 Optional TYPE and COUNT arguments to override

Schan->put (VALUE) puts values in the channel’s native type

o VALUE may be a scalar or an array

$chan->put callback (SUB, VALUE) puts values in the channel’s native data type

0 VALUE may be a scalar or an array

AES EPICS Training — May 2013 — CA Client APIs

19

v

Perl Data Type Parameters

The TYPE argument is a string naming the desired DBR xxx type

m The COUNT argument is the integer number of elements

m If the data contains multiple elements, the callback subroutine’s $data argument

becomes an array reference

m If the data represents a composite type, the callback subroutine’s $data argument

becomes a hash reference
e The hash elements included are specific to the type requested
e See the Perl CA Library documentation for more details

AES EPICS Training — May 2013 — CA Client APIs

20

Multi-threading

m The CAclient library is thread-aware
e Can be used in both single- and multi-threaded environments
® Uses threads internally, 2 per server it connects to

e Callbacks are usually executed by one of the server-specific threads

m Applications can configure callbacks to be run preemptively

e By default, callbacks are only run when the application is inside ca_pend io (),
ca poll() orca pend event ()

® C(Callca context create(ca enable preemptive callback) ; to change that

e The application is then responsible for using mutexes to protect shared resources etc.

m Use ca_current context() and ca_attach context() to share a single CA client
context between multiple application threads

AES EPICS Training — May 2013 — CA Client APIs
21

Ideal CA client?

m Register and use callbacks for everything

Event-driven programming; polling loops or fixed time outs

On connection, check the channel’s native type

O Limit the data type conversion burden on the I0C

Subscribe for DBE_PROPERTY updates using the DBR_CTRL type

0 This provides the full channel detail (units, limits, ...)

o Future IOCs will send property events when those attributes change

Subscribe for value updates using DBR_TIME type to get time+alarm+value

Only subscribe once at first connection; the CA library automatically re-activates
subscriptions after a disconnect/reconnect

0 However, be prepared in case the channel's native type changes (rare, but this can happen)

m This gives updates without having to poll for changes

AES EPICS Training — May 2013 — CA Client APIs

22

Quick Hacks, Scripts

m In many cases, scripts written in bash/perl/python/php can just invoke the
command-line ‘caget’ and ‘caput’ programs

m Especially useful if you only need to read/write one PV value and not subscribe to
value updates

m CA Client library bindings are available for Perl, Python & PHP
e Perl bindings are included in EPICS Base (not on MS Windows)

® You have to find, build and update them for Python and PHP

0 Your script may be portable, but you still have to install the CAC-for-p* binding separately for Linux,
Win32, MacOS...

AES EPICS Training — May 2013 — CA Client APIs
23

v

Base caClient template

m EPICS Base Includes a makeBaseApp.pl template that builds two basic CA client
programs written in C:

® Run this:
mkdir client && cd client
. ./base/bin/darwin-x86/makeBaseApp.pl -t caClient cacApp

make

® Builds two programs:
bin/darwin-x86/caExample pvName
bin/darwin-x86/caMonitor pvListFile

AES EPICS Training — May 2013 — CA Client APIs
24

v

caClient Example Programs

m caExample.c
e Minimal CA client program
e Fixed timeout, waits until data arrives
e Requests everything as DBR DOUBLE
m caMonitor.c
e Better CAclient program

e Registers callbacks for connections, exceptions, access rights
® Subscribes for value updates
O Only uses one data type (DBR_STRING) for everything

AES EPICS Training — May 2013 — CA Client APIs

25

	Slide 1
	Channel Access
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Excerpt from db_access.h
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Ideal CA client?
	Quick Hacks, Scripts
	makeBaseApp.pl
	makeBaseApp's caExample.c

